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λ-blocks

How can we manage the composition of many input sources, data
processing algorithms, and program results with a consistent and

effective fashion, in a data-centric organization?



λ-blocks

Outline

Introduction

Architecture

Topologies and blocks

Graph manipulations

Evaluation

Conclusion

3 / 34



λ-blocks

Outline

Introduction

Architecture

Topologies and blocks

Graph manipulations

Evaluation

Conclusion

4 / 34



λ-blocks

Design goals

Design goals

I A data processing abstraction

I A graph of code blocks to represent an end-to-end processing
system

I Separation of concerns: low-level data operations, high-level
data processing programs

I Maximize reuse of code

I Compatible with existing (specialized) frameworks and
possibility to mix them

I Graph manipulation toolkit

I Bring simplicity to large-scale data processing
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Topologies

read file
/etc/passwd

count

filter
contains: ’root’
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λ-blocks

Topologies

"""Counts system users.

"""

def main():

with open('/etc/passwd') as f:

return len(f.readlines())

if __name__ == '__main__':

print(main())

$ wc -l /etc/passwd
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λ-blocks

Topologies

---

name: count_users

description: Count number of system users

modules: [lb.blocks.foo]

---

- block: readfile

name: my_readfile
args :

filename: /etc/passwd

- block: count

name: my_count

inputs :

data: my_readfile.result
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λ-blocks

Blocks
I read http

I plot bars

I show console

I write line

I write lines

I split

I concatenate

I map list

I flatMap

I flatten list

I group by count

I sort

I get spark context

I spark readfile

I spark text to words

I spark map

I spark filter

I spark flatMap

I spark mapPartitions

I spark sample

I spark union

I spark intersection

I spark distinct

I spark groupByKey

I spark reduceByKey

I spark aggregateByKey

I spark sortByKey

I spark join

I spark cogroup

I spark cartesian

I spark pipe

I spark coalesce

I spark repartition

I spark reduce

I spark collect

I spark count

I spark first

I spark take

I spark takeSample

I spark takeOrdered

I spark saveAsTextFile

I spark countByKey

I spark foreach

I spark add

I spark swap

I twitter search

I cat

I grep

I cut

I head

I tail
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λ-blocks

Blocks

@block(engine='localpython')

def take(n: int=0):

"""Truncates a list of integers.

:param int n: The length of the desired result.

:input List[int] data: The list of items to truncate.

:output List[int] result: The truncated result.

"""

def inner(data: List[int])->ReturnType[List[int]]:

assert n <= len(data)

return ReturnEntry(result=data[:n])

return inner

13 / 34
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Sub-topologies

readfile

filter

count

print

count pb
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λ-blocks

Sub-topologies

---

name: count_pb

---

- block: filter

name: filter

args:

contains: error

inputs:

data: $inputs.data

- block: count

name: count

inputs:

data: filter.result

---

name: foo_errors

---

- block: readfile

name: readfile

args:

filename: foo.log

- topology : count_pb

name: count_pb

bind_in :

data: readfile.result

bind_out :

result: count.result

- block: print

name: print

inputs:

data: count_pb.result
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Graph manipulations

I Verification (e.g. type checking)

I Instrumentation

I Caching

I Debugging tools

I Optimizations

I Monitoring

I Program reasoning and semantics
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λ-blocks

Graph manipulations

I Reasoning on the computation graph as a high-level object

I Plugin system
I Hooks:

I before graph execution

pre-processing, optimizations, verifications
I after graph execution

post-processing
I before block execution

observation, optimizations
I after block execution

observation
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λ-blocks

Graph manipulation example: instrumentation (excerpt)

by_block = {} # timing by block: begin, duration

@before_block_execution

def store_begin_time(block):

name = block.fields['name']

by_block[name]['begin'] = time.time()

@after_block_execution

def store_end_time(block, results):

name = block.fields['name']

by_block[name]['duration'] = \

time.time() - by_block[name]['begin']

19 / 34
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λ-blocks

Graph manipulation example: instrumentation (excerpt)

@after_graph_execution

def show_times(results):

longest_first = sorted(by_block, reverse=True)

for blockname in longest_first:

print('{}\t{}'.format(

blockname,

by_block[blockname]['duration'])
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λ-blocks

Graph manipulation example: instrumentation

block duration (ms)
read http 818
write lines 54
grep 49
split 20
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λ-blocks

Graph manipulation example: caching

X

X

H(B) = h(B.name, block name (not instance name)

B.args, list of (name, value) tuples

B.inputs) list of (name, H(block), connector) tuples

22 / 34
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λ-blocks

Evaluation

Setup

I Wordcount over https: local machine, 8 cores, 16 GB RAM

I Wordcount over disk: local machine, 8 cores, 16 GB RAM

I PageRank on Spark: Spark on 1 server (24 cores, 128 GB
RAM)

24 / 34
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Evaluation

Performances
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Figure: Wordcount over https: Twitter feed.
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Figure: Wordcount over disk: Wikipedia dataset.
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Evaluation

Performances
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Figure: PageRank on Wikipedia hyperlinks with Spark.
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λ-blocks

Evaluation: using a Spark cluster

λ-blocks

Spark
master slave-1 slave-2 slave-3

Block calling Spark

Normal block
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λ-blocks

Evaluation

Maximum overhead measured per topology: 50 ms
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λ-blocks

Conclusion

λ-blocks enables:

I decoupling between standalone pieces of code which
transform data, and data processing algorithms;

I reasoning on a high-level abstraction of a data processing
program;

I reusing everything (code, topologies, specialized frameworks).

31 / 34



λ-blocks

Related work

Dataflow programming

I ML pipelines: scikit-learn [PVG+11], Spark [The17a], Orange
framework [DCE+13]

I Real-time: Apache Beam [apa], StreamPipes [RKHS15]

Blocks programming

I Recognition over recall, immediate feedback [BGK+17]

Graphs from configuration

I Pyleus [Yel16], Storm Flux [The17b]

Other

I “Serverless” architectures and stateless functions [JVSR17]

32 / 34



λ-blocks

Related work

Dataflow programming

I ML pipelines: scikit-learn [PVG+11], Spark [The17a], Orange
framework [DCE+13]

I Real-time: Apache Beam [apa], StreamPipes [RKHS15]

Blocks programming

I Recognition over recall, immediate feedback [BGK+17]

Graphs from configuration

I Pyleus [Yel16], Storm Flux [The17b]

Other

I “Serverless” architectures and stateless functions [JVSR17]

32 / 34



λ-blocks

Related work

Dataflow programming

I ML pipelines: scikit-learn [PVG+11], Spark [The17a], Orange
framework [DCE+13]

I Real-time: Apache Beam [apa], StreamPipes [RKHS15]

Blocks programming

I Recognition over recall, immediate feedback [BGK+17]

Graphs from configuration

I Pyleus [Yel16], Storm Flux [The17b]

Other

I “Serverless” architectures and stateless functions [JVSR17]

32 / 34



λ-blocks

Related work

Dataflow programming

I ML pipelines: scikit-learn [PVG+11], Spark [The17a], Orange
framework [DCE+13]

I Real-time: Apache Beam [apa], StreamPipes [RKHS15]

Blocks programming

I Recognition over recall, immediate feedback [BGK+17]

Graphs from configuration

I Pyleus [Yel16], Storm Flux [The17b]

Other

I “Serverless” architectures and stateless functions [JVSR17]

32 / 34



Conclusion

Future work

I Explore more graph manipulation abstractions (complexity
analysis, serialization, verification. . . )

I Streaming and online operations

I Tight integration with clusters (data storage, caches, etc)

33 / 34



Thanks! Questions?
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I Goto e spaghetti code, http://blogbv2.altervista.org/
HD/il-goto-e-la-buona-programmazione-parte-ii/
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