
λ-blocks: Data Processing with
Topologies of Blocks

Matthieu Caneill, Noël De Palma

July 3, 2018

IEEE Services — Big Data Congress

λ-blocks

How can we manage the composition of many input sources, data
processing algorithms, and program results with a consistent and

effective fashion, in a data-centric organization?

λ-blocks

Outline

Introduction

Architecture

Topologies and blocks

Graph manipulations

Evaluation

Conclusion

3 / 34

λ-blocks

Outline

Introduction

Architecture

Topologies and blocks

Graph manipulations

Evaluation

Conclusion

4 / 34

λ-blocks

Design goals

Design goals

I A data processing abstraction

I A graph of code blocks to represent an end-to-end processing
system

I Separation of concerns: low-level data operations, high-level
data processing programs

I Maximize reuse of code

I Compatible with existing (specialized) frameworks and
possibility to mix them

I Graph manipulation toolkit

I Bring simplicity to large-scale data processing

5 / 34

λ-blocks

Design goals

Design goals

I A data processing abstraction

I A graph of code blocks to represent an end-to-end processing
system

I Separation of concerns: low-level data operations, high-level
data processing programs

I Maximize reuse of code

I Compatible with existing (specialized) frameworks and
possibility to mix them

I Graph manipulation toolkit

I Bring simplicity to large-scale data processing

5 / 34

λ-blocks

Design goals

Design goals

I A data processing abstraction

I A graph of code blocks to represent an end-to-end processing
system

I Separation of concerns: low-level data operations, high-level
data processing programs

I Maximize reuse of code

I Compatible with existing (specialized) frameworks and
possibility to mix them

I Graph manipulation toolkit

I Bring simplicity to large-scale data processing

5 / 34

λ-blocks

Design goals

Design goals

I A data processing abstraction

I A graph of code blocks to represent an end-to-end processing
system

I Separation of concerns: low-level data operations, high-level
data processing programs

I Maximize reuse of code

I Compatible with existing (specialized) frameworks and
possibility to mix them

I Graph manipulation toolkit

I Bring simplicity to large-scale data processing

5 / 34

λ-blocks

Design goals

Design goals

I A data processing abstraction

I A graph of code blocks to represent an end-to-end processing
system

I Separation of concerns: low-level data operations, high-level
data processing programs

I Maximize reuse of code

I Compatible with existing (specialized) frameworks and
possibility to mix them

I Graph manipulation toolkit

I Bring simplicity to large-scale data processing

5 / 34

λ-blocks

Design goals

Design goals

I A data processing abstraction

I A graph of code blocks to represent an end-to-end processing
system

I Separation of concerns: low-level data operations, high-level
data processing programs

I Maximize reuse of code

I Compatible with existing (specialized) frameworks and
possibility to mix them

I Graph manipulation toolkit

I Bring simplicity to large-scale data processing

5 / 34

λ-blocks

Design goals

Design goals

I A data processing abstraction

I A graph of code blocks to represent an end-to-end processing
system

I Separation of concerns: low-level data operations, high-level
data processing programs

I Maximize reuse of code

I Compatible with existing (specialized) frameworks and
possibility to mix them

I Graph manipulation toolkit

I Bring simplicity to large-scale data processing

5 / 34

λ-blocks

Outline

Introduction

Architecture

Topologies and blocks

Graph manipulations

Evaluation

Conclusion

6 / 34

λ-blocks

Architecture

x
x

x

Block libraries

Blocks
registry

Graph
engine

Topology

API, CLI

Graph
plugins

x

7 / 34

λ-blocks

Architecture

x
x

x

Block libraries

Blocks
registry

Graph
engine

Topology

API, CLI

Graph
plugins

x

7 / 34

λ-blocks

Architecture

x
x

x

Block libraries

Blocks
registry

Graph
engine

Topology

API, CLI

Graph
plugins

x

7 / 34

λ-blocks

Architecture

x
x

x

Block libraries

Blocks
registry

Graph
engine

Topology

API, CLI

Graph
plugins

x

7 / 34

λ-blocks

Outline

Introduction

Architecture

Topologies and blocks

Graph manipulations

Evaluation

Conclusion

8 / 34

λ-blocks

Topologies

read file
/etc/passwd

count

filter
contains: ’root’

9 / 34

λ-blocks

Topologies

read file
/etc/passwd

count

filter
contains: ’root’

9 / 34

λ-blocks

Topologies

read file
/etc/passwd

count

filter
contains: ’root’

9 / 34

λ-blocks

Topologies

"""Counts system users.

"""

def main():

with open('/etc/passwd') as f:

return len(f.readlines())

if __name__ == '__main__':

print(main())

$ wc -l /etc/passwd

10 / 34

λ-blocks

Topologies

"""Counts system users.

"""

def main():

with open('/etc/passwd') as f:

return len(f.readlines())

if __name__ == '__main__':

print(main())

$ wc -l /etc/passwd

10 / 34

λ-blocks

Topologies

"""Counts system users.

"""

def main():

with open('/etc/passwd') as f:

return len(f.readlines())

if __name__ == '__main__':

print(main())

$ wc -l /etc/passwd

10 / 34

λ-blocks

Topologies

name: count_users

description: Count number of system users

modules: [lb.blocks.foo]

- block: readfile

name: my_readfile
args :

filename: /etc/passwd

- block: count

name: my_count

inputs :

data: my_readfile.result

11 / 34

λ-blocks

Blocks
I read http

I plot bars

I show console

I write line

I write lines

I split

I concatenate

I map list

I flatMap

I flatten list

I group by count

I sort

I get spark context

I spark readfile

I spark text to words

I spark map

I spark filter

I spark flatMap

I spark mapPartitions

I spark sample

I spark union

I spark intersection

I spark distinct

I spark groupByKey

I spark reduceByKey

I spark aggregateByKey

I spark sortByKey

I spark join

I spark cogroup

I spark cartesian

I spark pipe

I spark coalesce

I spark repartition

I spark reduce

I spark collect

I spark count

I spark first

I spark take

I spark takeSample

I spark takeOrdered

I spark saveAsTextFile

I spark countByKey

I spark foreach

I spark add

I spark swap

I twitter search

I cat

I grep

I cut

I head

I tail

12 / 34

λ-blocks

Blocks

@block(engine='localpython')

def take(n: int=0):

"""Truncates a list of integers.

:param int n: The length of the desired result.

:input List[int] data: The list of items to truncate.

:output List[int] result: The truncated result.

"""

def inner(data: List[int])->ReturnType[List[int]]:

assert n <= len(data)

return ReturnEntry(result=data[:n])

return inner

13 / 34

λ-blocks

Sub-topologies

readfile

filter

count

print

count pb

14 / 34

λ-blocks

Sub-topologies

readfile filter

count print

count pb

14 / 34

λ-blocks

Sub-topologies

name: count_pb

- block: filter

name: filter

args:

contains: error

inputs:

data: $inputs.data

- block: count

name: count

inputs:

data: filter.result

name: foo_errors

- block: readfile

name: readfile

args:

filename: foo.log

- topology : count_pb

name: count_pb

bind_in :

data: readfile.result

bind_out :

result: count.result

- block: print

name: print

inputs:

data: count_pb.result

15 / 34

λ-blocks

Sub-topologies

name: count_pb

- block: filter

name: filter

args:

contains: error

inputs:

data: $inputs.data

- block: count

name: count

inputs:

data: filter.result

name: foo_errors

- block: readfile

name: readfile

args:

filename: foo.log

- topology : count_pb

name: count_pb

bind_in :

data: readfile.result

bind_out :

result: count.result

- block: print

name: print

inputs:

data: count_pb.result
15 / 34

λ-blocks

Outline

Introduction

Architecture

Topologies and blocks

Graph manipulations

Evaluation

Conclusion

16 / 34

λ-blocks

Graph manipulations

I Verification (e.g. type checking)

I Instrumentation

I Caching

I Debugging tools

I Optimizations

I Monitoring

I Program reasoning and semantics

17 / 34

λ-blocks

Graph manipulations

I Verification (e.g. type checking)

I Instrumentation

I Caching

I Debugging tools

I Optimizations

I Monitoring

I Program reasoning and semantics

17 / 34

λ-blocks

Graph manipulations

I Verification (e.g. type checking)

I Instrumentation

I Caching

I Debugging tools

I Optimizations

I Monitoring

I Program reasoning and semantics

17 / 34

λ-blocks

Graph manipulations

I Verification (e.g. type checking)

I Instrumentation

I Caching

I Debugging tools

I Optimizations

I Monitoring

I Program reasoning and semantics

17 / 34

λ-blocks

Graph manipulations

I Verification (e.g. type checking)

I Instrumentation

I Caching

I Debugging tools

I Optimizations

I Monitoring

I Program reasoning and semantics

17 / 34

λ-blocks

Graph manipulations

I Verification (e.g. type checking)

I Instrumentation

I Caching

I Debugging tools

I Optimizations

I Monitoring

I Program reasoning and semantics

17 / 34

λ-blocks

Graph manipulations

I Verification (e.g. type checking)

I Instrumentation

I Caching

I Debugging tools

I Optimizations

I Monitoring

I Program reasoning and semantics

17 / 34

λ-blocks

Graph manipulations

I Reasoning on the computation graph as a high-level object

I Plugin system
I Hooks:

I before graph execution

pre-processing, optimizations, verifications
I after graph execution

post-processing
I before block execution

observation, optimizations
I after block execution

observation

18 / 34

λ-blocks

Graph manipulations

I Reasoning on the computation graph as a high-level object

I Plugin system

I Hooks:
I before graph execution

pre-processing, optimizations, verifications
I after graph execution

post-processing
I before block execution

observation, optimizations
I after block execution

observation

18 / 34

λ-blocks

Graph manipulations

I Reasoning on the computation graph as a high-level object

I Plugin system
I Hooks:

I before graph execution

pre-processing, optimizations, verifications

I after graph execution

post-processing
I before block execution

observation, optimizations
I after block execution

observation

18 / 34

λ-blocks

Graph manipulations

I Reasoning on the computation graph as a high-level object

I Plugin system
I Hooks:

I before graph execution

pre-processing, optimizations, verifications
I after graph execution

post-processing

I before block execution

observation, optimizations
I after block execution

observation

18 / 34

λ-blocks

Graph manipulations

I Reasoning on the computation graph as a high-level object

I Plugin system
I Hooks:

I before graph execution

pre-processing, optimizations, verifications
I after graph execution

post-processing
I before block execution

observation, optimizations

I after block execution

observation

18 / 34

λ-blocks

Graph manipulations

I Reasoning on the computation graph as a high-level object

I Plugin system
I Hooks:

I before graph execution

pre-processing, optimizations, verifications
I after graph execution

post-processing
I before block execution

observation, optimizations
I after block execution

observation

18 / 34

λ-blocks

Graph manipulation example: instrumentation (excerpt)

by_block = {} # timing by block: begin, duration

@before_block_execution

def store_begin_time(block):

name = block.fields['name']

by_block[name]['begin'] = time.time()

@after_block_execution

def store_end_time(block, results):

name = block.fields['name']

by_block[name]['duration'] = \

time.time() - by_block[name]['begin']

19 / 34

λ-blocks

Graph manipulation example: instrumentation (excerpt)

by_block = {} # timing by block: begin, duration

@before_block_execution

def store_begin_time(block):

name = block.fields['name']

by_block[name]['begin'] = time.time()

@after_block_execution

def store_end_time(block, results):

name = block.fields['name']

by_block[name]['duration'] = \

time.time() - by_block[name]['begin']

19 / 34

λ-blocks

Graph manipulation example: instrumentation (excerpt)

@after_graph_execution

def show_times(results):

longest_first = sorted(by_block, reverse=True)

for blockname in longest_first:

print('{}\t{}'.format(

blockname,

by_block[blockname]['duration'])

20 / 34

λ-blocks

Graph manipulation example: instrumentation

block duration (ms)
read http 818
write lines 54
grep 49
split 20

21 / 34

λ-blocks

Graph manipulation example: caching

X

X

H(B) = h(B.name, block name (not instance name)

B.args, list of (name, value) tuples

B.inputs) list of (name, H(block), connector) tuples

22 / 34

λ-blocks

Outline

Introduction

Architecture

Topologies and blocks

Graph manipulations

Evaluation

Conclusion

23 / 34

λ-blocks

Evaluation

Setup

I Wordcount over https: local machine, 8 cores, 16 GB RAM

I Wordcount over disk: local machine, 8 cores, 16 GB RAM

I PageRank on Spark: Spark on 1 server (24 cores, 128 GB
RAM)

24 / 34

λ-blocks

Evaluation

Performances

LB LB+plugins Python

0.1

0.2

0.3

0.4

0.5

0.6

ti
m

e
(s

)

real user sys

Figure: Wordcount over https: Twitter feed.

25 / 34

λ-blocks

Evaluation

Performances

LB LB+plugins Python

1

2

3

4

5

6

ti
m

e
(s

)

real user sys

Figure: Wordcount over disk: Wikipedia dataset.

26 / 34

λ-blocks

Evaluation

Performances

LB LB+plugins Python
0

200

400

600

800

ti
m

e
(s

)

real user sys

Figure: PageRank on Wikipedia hyperlinks with Spark.

27 / 34

λ-blocks

Evaluation: using a Spark cluster

λ-blocks

Spark
master slave-1 slave-2 slave-3

Block calling Spark

Normal block

28 / 34

λ-blocks

Evaluation

Maximum overhead measured per topology: 50 ms

29 / 34

λ-blocks

Outline

Introduction

Architecture

Topologies and blocks

Graph manipulations

Evaluation

Conclusion

30 / 34

λ-blocks

Conclusion

λ-blocks enables:

I decoupling between standalone pieces of code which
transform data, and data processing algorithms;

I reasoning on a high-level abstraction of a data processing
program;

I reusing everything (code, topologies, specialized frameworks).

31 / 34

λ-blocks

Related work

Dataflow programming

I ML pipelines: scikit-learn [PVG+11], Spark [The17a], Orange
framework [DCE+13]

I Real-time: Apache Beam [apa], StreamPipes [RKHS15]

Blocks programming

I Recognition over recall, immediate feedback [BGK+17]

Graphs from configuration

I Pyleus [Yel16], Storm Flux [The17b]

Other

I “Serverless” architectures and stateless functions [JVSR17]

32 / 34

λ-blocks

Related work

Dataflow programming

I ML pipelines: scikit-learn [PVG+11], Spark [The17a], Orange
framework [DCE+13]

I Real-time: Apache Beam [apa], StreamPipes [RKHS15]

Blocks programming

I Recognition over recall, immediate feedback [BGK+17]

Graphs from configuration

I Pyleus [Yel16], Storm Flux [The17b]

Other

I “Serverless” architectures and stateless functions [JVSR17]

32 / 34

λ-blocks

Related work

Dataflow programming

I ML pipelines: scikit-learn [PVG+11], Spark [The17a], Orange
framework [DCE+13]

I Real-time: Apache Beam [apa], StreamPipes [RKHS15]

Blocks programming

I Recognition over recall, immediate feedback [BGK+17]

Graphs from configuration

I Pyleus [Yel16], Storm Flux [The17b]

Other

I “Serverless” architectures and stateless functions [JVSR17]

32 / 34

λ-blocks

Related work

Dataflow programming

I ML pipelines: scikit-learn [PVG+11], Spark [The17a], Orange
framework [DCE+13]

I Real-time: Apache Beam [apa], StreamPipes [RKHS15]

Blocks programming

I Recognition over recall, immediate feedback [BGK+17]

Graphs from configuration

I Pyleus [Yel16], Storm Flux [The17b]

Other

I “Serverless” architectures and stateless functions [JVSR17]

32 / 34

Conclusion

Future work

I Explore more graph manipulation abstractions (complexity
analysis, serialization, verification. . .)

I Streaming and online operations

I Tight integration with clusters (data storage, caches, etc)

33 / 34

Thanks! Questions?

Images credits

I Goto e spaghetti code, http://blogbv2.altervista.org/
HD/il-goto-e-la-buona-programmazione-parte-ii/

1 / 5

http://blogbv2.altervista.org/HD/il-goto-e-la-buona-programmazione-parte-ii/
http://blogbv2.altervista.org/HD/il-goto-e-la-buona-programmazione-parte-ii/

Bibliography I

Apache Beam.
https://beam.apache.org/.

David Bau, Jeff Gray, Caitlin Kelleher, Josh Sheldon, and
Franklyn Turbak.
Learnable programming: Blocks and beyond.
Commun. ACM, 60(6):72–80, May 2017.

Janez Demšar, Tomaž Curk, Aleš Erjavec, Črt Gorup, Tomaž
Hočevar, Mitar Milutinovič, Martin Možina, Matija Polajnar,
Marko Toplak, Anže Starič, Miha Štajdohar, Lan Umek, Lan
Žagar, Jure Žbontar, Marinka Žitnik, and Blaž Zupan.
Orange: Data mining toolbox in python.
Journal of Machine Learning Research, 14:2349–2353, 2013.

2 / 5

https://beam.apache.org/

Bibliography II

Eric Jonas, Shivaram Venkataraman, Ion Stoica, and Benjamin
Recht.
Occupy the cloud: Distributed computing for the 99%.
arXiv preprint arXiv:1702.04024, 2017.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss,
V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay.
Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12:2825–2830, 2011.

3 / 5

Bibliography III

Dominik Riemer, Florian Kaulfersch, Robin Hutmacher, and
Ljiljana Stojanovic.
Streampipes: solving the challenge with semantic stream
processing pipelines.
In Proceedings of the 9th ACM International Conference on
Distributed Event-Based Systems, pages 330–331. ACM, 2015.

The Apache Spark developers.
ML Pipelines.
https:

//spark.apache.org/docs/latest/ml-pipeline.html,
2017.

4 / 5

https://spark.apache.org/docs/latest/ml-pipeline.html
https://spark.apache.org/docs/latest/ml-pipeline.html

Bibliography IV

The Apache Storm developers.
Flux.
http://storm.apache.org/releases/2.0.0-SNAPSHOT/

flux.html, 2017.

YelpArchive.
Pyleus.
https://github.com/YelpArchive/pyleus, 2016.

5 / 5

http://storm.apache.org/releases/2.0.0-SNAPSHOT/flux.html
http://storm.apache.org/releases/2.0.0-SNAPSHOT/flux.html
https://github.com/YelpArchive/pyleus

