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Motivation

Worldwide data production
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Motivation

Applications

I Genome sequencing and querying (human: 3 B base pairs)

I Web and social networks (Facebook: 600 TB/day in 2014)

I Particle physics (CERN: 1 PB/s of collision data)

I etc.

Problems

I Data management at scale

I Data processing in reasonable time

I . . . and reasonable price
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Research questions

How to design. . .

I An industrial system to handle monitoring data and make
predictions about future failures?

I An algorithm to improve locality in distributed streaming
engines?

I A framework to compose data processing algorithms in a
descriptive fashion, while reasoning on high level abstractions?
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Outline

Structure of this presentation

1. Online metrics prediction in monitoring systems

2. Locality data routing

3. λ-blocks

4. Conclusion
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Metrics prediction in
monitoring systems

How to design an industrial system to handle monitoring data and
make predictions about future failures?

Metrics prediction in monitoring systems

Actors and roles of Smart Support Center

I Coservit: Monitoring services

I HP: Cloud computing, hardware

I LIG – AMA: Machine learning

I LIG – ERODS: Cloud computing, systems
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Metrics prediction in monitoring systems

Scope of Smart Support Center

monitoring data

machine learning system/cloud

I Monitoring insights

I Failure prediction

I Infrastructure scaling

I More server uptime
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Metrics prediction in monitoring systems

Challenges

I Scale monitoring infrastructure (from 1 to N nodes)

I System design for low latency analytics

I Fault tolerance
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Metrics prediction in monitoring systems

Metrics

I Monitoring metric: observation point on a server in a
datacenter

I CPU load, memory, service status

I Reported by agents, processed, and stored

I Computed as time-series

I Associated to thresholds: warning and critical
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Metrics prediction in monitoring systems

Metrics behaviour: 6 scenarios

Value

Critical zone

Warning zone

Quick rise

Slow riseTransient rise

Perplexity pointSlow rise

Quick rise

Time
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Metrics prediction in monitoring systems

Linear regression

time

va
lu

e

I Ability to identify local
trends (few hours)

I Fast to compute

I Good candidate to avoid
false positives (peaks)

I Library: MLlib (part of
Apache Spark)

12 / 71



Metrics prediction in monitoring systems

System architecture

x
x

x

Monitoring agents

Monitoring
broker

Cassandra
database

Spark +
MLlib

Alert
manager

GUI ...
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Metrics prediction in monitoring systems

System architecture

Desired properties

I Scalable: up to a few servers (150 CPU cores) to handle
Coservit’s load

I End-to-end fault tolerance: metrics can never be lost

I Performances: “fast” to compute metrics predictions
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Metrics prediction in monitoring systems

Evaluation

Setup

I Hardware: 4 servers (16–28 cores, 128–256 GB RAM)

I Dataset: Replay on production data recorded at Coservit

I 424 206 metrics, 1.5 billion data points monitored on 25 070
servers
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Metrics prediction in monitoring systems

Evaluation
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Metrics prediction in monitoring systems

Evaluation
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Metrics prediction in monitoring systems

Evaluation
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Metrics prediction in monitoring systems

Evaluation

Metric blacklisting

I Some metrics are too volatile and hard to predict

I To avoid false positives/negatives, and save resources, they
are blacklisted

I Root Mean Square Error evaluated weekly

I Metrics (temporarily) blacklisted if their RMSE > threshold

I 58.5% of the metrics have a low RMSE → good predictions
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Metrics prediction in monitoring systems

Evaluation

CPU load and memory consumption
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Figure: Running on 4 machines and 100 cores for 15 minutes.
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Metrics prediction in monitoring systems

Evaluation

Time repartition
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Figure: Time repartition for predicting a metric.
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Metrics prediction in monitoring systems

Evaluation

Load handling

I End-to-end process for the prediction of 1 metric: 1 second.

I One monitoring server (with 24 cores) can handle the load of
1440 metrics (at worst), which is 85 servers on average.
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Metrics prediction in monitoring systems

Evaluation

Load handling: linear scaling
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Figure: Amount of metrics handled in 15 minutes.
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Metrics prediction in monitoring systems

Related work

Positioning

No published work exhibits the same system (end-to-end system
for monitoring metrics prediction, storage and blacklisting).

Prediction models

I Hardware failures [CAS12]

I Capacity planning (e.g. Microsoft Azure [mic])

I Datacenter temperature (e.g. Thermocast [LLL+11])

I Monitoring metrics (e.g. Zabbix [zab] with manual tuning)
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Locality data routing

How to design an algorithm to improve locality in distributed
streaming engines?

Locality data routing

Actors
Collaboration with Vincent Leroy (SLIDE)
and Ahmed El-Rheddane (ERODS).
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Locality data routing

Distributed streaming engines

Goals

I Real-time message handling

I Real-time metric calculations

I Parallelization

I Fault-tolerance
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Locality data routing

Distributed streaming engines

Apache Storm → topologies.

S
A

extract

B
lower

C
count

Figure: Trending hashtags topology.

S sends tweets, operator A extract hashtags, B converts them to
lowercase, and C counts the frequency of each hashtag.

Division into tasks → distribution and parallelization made easy.
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Locality data routing

Stateful operators

States are associated to keys

For example, the operator C can keep the list of trending hashtags
(values) per location (keys).

S
A

extract

B
lower

C
count

state
...
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Locality data routing

Stateful operators

Parallelization
To keep a consistent state, same keys must be routed to the same
instance.

S

A1

A2

B1

B2

C1

C2

C3

foo
foo

bar

bar

Figure: Tasks A and B are stateless, C is stateful.
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Locality data routing

Situation
Let’s have two stateful operators, each with two instances.

Server 1

Server 2

S

A1

A2

B1

B2

Goal
Minimize the traffic between the
machines: A1→ B2 and A2→ B1.
By default, locality = 1/parallelism

Constraint
Keep a good load balance between
the machines.
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Locality data routing

Keys correlation

Dynamically instrument the keys couples and represent them with
a bipartite graph.

Asia
7443

Oceania

5190

#java

4664

#ruby

3892

#python

4077

3463

3011969

1201

881

3108

Server 1

Server 2

Routing tables

I S : Asia → A1

Oceania → A2

I A1: #java → B1

#ruby → B1

#python → B2

I A2: #python → B2

#java → B1

#ruby → B1

Graph partitioning → optimized routing, favorizing local links.
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Locality data routing

Server 1

Server 2

S

A1

A2

B1

B2

Message: #python is pretty cool!
Posted from: Oceania

S
key route
Oceania A1

Asia A2

A
key route
python B1

java B2

Reconfiguration is computed and applied

Correlation between Oceania/python and Asia/java
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Locality data routing

Trends evolve with time
Correlations between keys change frequently.
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Figure: #nevertrump, in March 2016
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Locality data routing

Locality decay

I Keys correlations evolve with time.

I Routing tables optimized by examining old data lead to
decreased locality.

Reconfiguration

I We re-compute the tables every N minutes.

I Difficulty: keep the state consistent.
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Locality data routing

Reconfiguration protocol

Solution: online reconfiguration protocol

I update the routing tables in a live system

I without losing any message and state
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Locality data routing

Reconfiguration protocol

M A1 A2 B1 B2

1 1 1 1

2 2 2 2
compute

routing

tables
3 3 3 3

4 4 4 4

5 5

66

5 5
5

5

66

1○ Get statistics
2○ Send statistics
Partition graph, compute routing tables

3○ Send reconfiguration
4○ Send ACK
5○ Propagate
6○ Transfer key states
Propagate to next operator
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Locality data routing

Evaluation

Datasets

I From Flickr and Twitter

I Fields: location (country or place), hashtag

I Size: 173M records (Flickr), 100M (Twitter)

Setup

I 8× 128 GB RAM, 20 cores.

I Computation of aggregated statistics (stateful workers).

I Parallelism (2..6), network speed (1Gb/s
∣∣ 10Gb/s), message

size (0..20kB).
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Locality data routing

Evaluation

Great speed-up when network is the bottleneck.

Highly dependent on message size.
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Locality data routing

Evaluation – Flickr

Throughput (Ktuples/s) on 10Gb/s network, parallelism 6

0 5 10 15 20 25 30
0

100

200

300

400

500

time (minutes)

w/ reconfiguration

w/o reconfiguration

(a) message size=4kB

0 5 10 15 20 25 30
0

100

200

300

400

500

time (minutes)

w/ reconfiguration

w/o reconfiguration

(b) message size=8kB
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Locality data routing

Evaluation – Flickr

Throughput (Ktuples/s) on 1Gb/s network, parallelism 6
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Locality data routing

Evaluation – Flickr

Average throughput with 1Gb/s network, 4kB message size
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Figure: Average throughput, measured after the first reconfiguration.

42 / 71

Locality data routing

Evaluation – Flickr

Locality, with parallelism 6
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Locality data routing

Evaluation – Flickr

Locality when changing the number of collected key
correlations
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Locality data routing

Related work

Scheduling: placement of operators on servers

I Using the topology [ABQ13]

I Using observed communication patterns [ABQ13]

I Using observed and/or estimated CPU and memory
patterns [FB15, PHH+15]

Load balancing: limit impact of data skew

I Partial key grouping [NMG+15]

I Special routing for frequent keys [RQA+15]

Co-location of correlated keys

I Databases partitions [CJZM10], social networks [BJJL13]
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λ-blocks

How to design a framework to compose data processing
algorithms in a descriptive fashion, while reasoning on high level

abstractions?

λ-blocks

Design goals

I A data processing abstraction

I A graph of code blocks to represent an end-to-end processing
system

I Separation of concerns: low-level data operations, high-level
data processing programs

I Maximize reuse of code

I Compatible with existing (specialized) frameworks and
possibility to mix them

I Graph manipulation toolkit

I Bring simplicity to large-scale data processing
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λ-blocks

Topologies

read file
/etc/passwd

count

filter
contains: ’root’
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λ-blocks

Topologies

"""Counts system users.

"""

def main():

with open('/etc/passwd') as f:

return len(f.readlines())

if __name__ == '__main__':

print(main())

$ wc -l /etc/passwd
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λ-blocks

Topologies

---

name: count_users

description: Count number of system users

modules: [lb.blocks.foo]

---

- block: readfile

name: my_readfile
args :

filename: /etc/passwd

- block: count

name: my_count

inputs :

data: my_readfile.result
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λ-blocks

Blocks
I read http

I plot bars

I show console

I write line

I write lines

I split

I concatenate

I map list

I flatMap

I flatten list

I group by count

I sort

I get spark context

I spark readfile

I spark text to words

I spark map

I spark filter

I spark flatMap

I spark mapPartitions

I spark sample

I spark union

I spark intersection

I spark distinct

I spark groupByKey

I spark reduceByKey

I spark aggregateByKey

I spark sortByKey

I spark join

I spark cogroup

I spark cartesian

I spark pipe

I spark coalesce

I spark repartition

I spark reduce

I spark collect

I spark count

I spark first

I spark take

I spark takeSample

I spark takeOrdered

I spark saveAsTextFile

I spark countByKey

I spark foreach

I spark add

I spark swap

I twitter search

I cat

I grep

I cut

I head

I tail
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λ-blocks

Blocks

@block(engine='localpython')

def take(n: int=0):

"""Truncates a list of integers.

:param int n: The length of the desired result.

:input List[int] data: The list of items to truncate.

:output List[int] result: The truncated result.

"""

def inner(data: List[int])->ReturnType[List[int]]:

assert n <= len(data)

return ReturnEntry(result=data[:n])

return inner

52 / 71



λ-blocks

Sub-topologies

readfile filter

count print

count pb
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λ-blocks

Sub-topologies

---

name: count_pb

---

- block: filter

name: filter

args:

contains: error

inputs:

data: $inputs.data

- block: count

name: count

inputs:

data: filter.result

---

name: foo_errors

---

- block: readfile

name: readfile

args:

filename: foo.log

- topology : count_pb

name: count_pb

bind_in :

data: readfile.result

bind_out :

result: count.result

- block: print

name: print

inputs:

data: count_pb.result
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λ-blocks

Architecture

x
x

x

Block libraries

Blocks
registry

Graph
engine

Topology

API, CLI

Graph
plugins

x
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λ-blocks

Graph manipulations

I Verification (e.g. type checking)

I Instrumentation

I Caching

I Debugging tools

I Optimizations

I Monitoring

I Program reasoning and semantics
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λ-blocks

Graph manipulations

I Reasoning on the computation graph as a high-level object

I Plugin system
I Hooks:

I before graph execution

pre-processing, optimizations, verifications
I after graph execution

post-processing
I before block execution

observation, optimizations
I after block execution

observation
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λ-blocks

Graph manipulation example: instrumentation (excerpt)

by_block = {} # timing by block: begin, duration

@before_block_execution

def store_begin_time(block):

name = block.fields['name']

by_block[name]['begin'] = time.time()

@after_block_execution

def store_end_time(block, results):

name = block.fields['name']

by_block[name]['duration'] = \

time.time() - by_block[name]['begin']
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λ-blocks

Graph manipulation example: instrumentation (excerpt)

@after_graph_execution

def show_times(results):

longest_first = sorted(by_block, reverse=True)

for blockname in longest_first:

print('{}\t{}'.format(

blockname,

by_block[blockname]['duration'])
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λ-blocks

Graph manipulation example: instrumentation

block duration (ms)
read http 818
write lines 54
grep 49
split 20
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λ-blocks

Evaluation

Setup

I Wordcount over https: local machine, 8 cores, 16 GB RAM

I Wordcount over disk: local machine, 8 cores, 16 GB RAM

I PageRank on Spark: Spark on 1 server (24 cores, 128 GB
RAM)
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λ-blocks

Evaluation

Performances
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Figure: Wordcount over https: Twitter feed.
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λ-blocks

Evaluation

Performances
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Figure: Wordcount over disk: Wikipedia dataset.
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λ-blocks

Evaluation

Performances
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Figure: PageRank on Wikipedia hyperlinks with Spark.
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λ-blocks

Evaluation

Maximum overhead measured per topology: 50 ms
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λ-blocks

Related work

Dataflow programming

I ML pipelines: scikit-learn [PVG+11], Spark [The17a], Orange
framework [DCE+13]

I Real-time: Apache Beam [apa], StreamPipes [RKHS15]

Blocks programming

I Recognition over recall, immediate feedback [BGK+17]

Graphs from configuration

I Pyleus [Yel16], Storm Flux [The17b]

Other

I “Serverless” architectures and stateless functions [JVSR17]
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Conclusion

Context

Computer systems to process large quantities of data.

Problems: how to design. . .

I An industrial system to handle monitoring data and make
predictions about future failures?

I An algorithm to improve locality in distributed streaming
engines?

I A framework to compose data processing algorithms in a
descriptive fashion, while reasoning on high level abstractions?
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Conclusion

Contributions

Metrics
prediction

Locality
routing

λ-blocks

What it is Industrial
system

Online routing
library

Data processing
abstraction

Layer End-to-end Low High

Improves Uptimes Throughput Programmability
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Conclusion

Future work

Metrics prediction in monitoring systems

I Predictions on long-term global trends

I Ticketing mechanism

Locality data routing

I Replace binary locality/non-locality with distance

I Smarter way to determine when to reschedule

I Extend to more complex topologies
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Conclusion

Future work

λ-blocks

I Explore more graph manipulation abstractions (complexity
analysis, serialization, verification. . . )

I Streaming and online operations

I Tight integration with clusters (data storage, caches, etc)
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Thanks! Questions?

λ-blocks

Using a Spark cluster

λ-blocks

Spark
master slave-1 slave-2 slave-3

Block calling Spark

Normal block
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λ-blocks

Signature algorithm

X

X

H(B) = h(B.name, block name (not instance name)

B.args, list of (name, value) tuples

B.inputs) list of (name, H(block), connector) tuples
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λ-blocks

Evaluation

Engine instrumentation
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Figure: Wordcount program running under different setups.
(1) Startup (modules import, etc); (2) Blocks registry creation, block
modules import; (3) Plugin import; (4) YAML parsing and graph
creation; (5) Graph checks; (6) Graph execution.
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Metrics prediction in monitoring systems

Database schema

metrics

metric id uuid
metric name text
group id uuid

measurements

metric id uuid
timestamp int
warn text
crit text
max double
min double
value double
metric name text
metric unit text

predictions

metric id uuid
timestamp int
predicted values list
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Images credits

I Data Center operators verifying network cable integrity,
CC-BY-SA,
https://commons.wikimedia.org/wiki/File:

Dc_cabling_50.jpg

I Tokyo metro map, http://bento.com/subtop5.html

I Goto e spaghetti code, http://blogbv2.altervista.org/
HD/il-goto-e-la-buona-programmazione-parte-ii/
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