
λ-blocks: Data Processing with Topologies of Blocks

Matthieu Caneill

Univ. Grenoble Alpes, CNRS, Grenoble INP, LIG
F-38000, Grenoble, France

caneill@imag.fr

Noël De Palma

Univ. Grenoble Alpes, CNRS, Grenoble INP, LIG
F-38000, Grenoble, France

depalma@imag.fr

Abstract—We present and evaluate λ-blocks1, a novel frame-
work to write data processing programs in a descriptive
manner. The main idea behind this framework is to separate
the semantics of a program from its implementation. For that
purpose, we define a data schema, able to describe, param-
eterize, compose, and link together blocks of code, storing
a directed graph which represents the data transformations.
Along this data schema lies an execution engine, able to read
such a program, give feedback on potential errors, and finally
execute it. In our reference implementation, a computation
graph is described in YAML, linking together vertices of
Python code blocks defined in separate libraries.

The advantages of this approach are manyfold: faster, less
error-prone programming; reuse of code blocks; computation
graph manipulations; mixing of different specialized libraries;
and finally middleware for potential front-ends (such as graph-
ical interfaces) and back-ends (other execution engines). The
main goal of λ-blocks is to bring complex data processing com-
putations to non-specialists, by providing a simple abstraction
over large-scale data processing systems.

Our contributions lie within a description of the schema,
and an analysis of the reference execution engine. For that
purpose we describe λ-blocks’ internals and its main abstrac-
tions (blocks and topologies), and evaluate the framework
performances. We measured the framework overhead to have
a maximum value of 50 ms, a negligible amount compared to
the average duration of data processing jobs.

I. INTRODUCTION

Within many frameworks and systems, data analysis can

be summed up to a set of high-level operations: connect

to a data store; fetch, clean and transform data; save the

obtained result. Data is flowing from one operator to another,

and the program can be easily represented with a directed

graph, where vertices are operators and edges connect them

together. For example, Apache Storm [1] allows to explicitly

define such a graph when linking together its agents (spouts

and bolts), and Apache Spark [2] automatically builds a

lineage graph inferred from the successive methods called

on its data structures (resilient distributed datasets). Many

operations have been standardized in the fields of relational

algebra or functional programming: map, reduce, filter, etc.

Specialized libraries apply these operations to different data

containers, sometimes on distributed clusters of machines,

with different levels of optimization.

1λ-blocks is available under the Apache software license at https://github.
com/lambdablocks/lambdablocks.

We argue these programs can be written in a higher-

level fashion. By writing one or more of these operations

in a “code block”, we abstract out the functional code

of this block, in the same manner as a library function.

Having inputs and outputs, a block can then be a vertex

of an oriented graph, which can be reused in different

computations.

We propose to write such a graph in a descriptive fashion,

rather than programmatic. Using for example YAML, a data

serialization format particularly easy to read and parse, we

can describe the vertices (linked to code blocks with unique

names) and their edges (an edge exists when one block’s

output is another block’s input). Moreover, a graph can itself

be a sub-graph of another graph, leveraging code-reuse one

step further. Some advantages of this approach include:

• strict separation of low-level data operations and high-

level data processing programs;

• direct manipulation of the computation graph, for op-

timization, instrumentation, etc;

• reusability of code, with blocks being used in many

programs, and computation graphs being composed of

other graphs;

• easier reading, understanding, sharing, evolution and

maintenance of a data processing program;

• seamless mixing of different frameworks and libraries

together;

• as a middleware layer, room for front-ends such as

graph visualization tools, and back-ends such as more

optimized execution engines.

λ-blocks aims to bring framework-agnostic dataflow pro-

gramming to large-scale data processing, without losing any

of the benefits provided by specialized and well-optimized

libraries implementing data operations.

The rest of this paper is organized as follows: we first

dive into λ-blocks’ design, its format for topologies and

blocks, and its execution engine. We then present exam-

ples of processing graph manipulations, before evaluating

the framework’s performances. We finally introduce some

related work and conclude.

9

2018 IEEE International Congress on Big Data

978-1-5386-7232-7/18/$31.00 ©2018 IEEE
DOI 10.1109/BigDataCongress.2018.00009

x
x

x

Block libraries

Blocks

registry

Graph

engine

Topology

API, CLI

Graph

plugins

�

Figure 1: System architecture

II. λ-BLOCKS

A. Terminology

We describe here the different abstractions used in λ-

blocks. These objects need to exist in any engine imple-

menting the system:

• Block: a standalone piece of code, able to provide in-

formation about its behavior, either using introspection

(with languages supporting it) or embedded declara-

tions (e.g. through decorators or class attributes). A

block needs to describe at least its ports and arguments

(explained below).

• Component: an instance of a block, i.e. a block with

its arguments, ready to run its functional code.

• Port: a named input or output of a block. The inputs

are the data provided to the block as arguments, and

the outputs are its results.

• Argument: a runtime option of a block, such as a

configuration value. It is different from an input port,

because it is not meant to carry flowing data, but rather

a variable to parameterize the block, initialized in the

topology.

• Registry: a catalog of blocks, providing their functional

code along with their metadata (a list of key-value pairs

used to classify blocks) and documentation.

• Topology: a computation graph, i.e. a high-level rep-

resentation of a data processing program, defining

components and linking them together as a DAG.

Sometimes simply called graph.

• Sub-topology: a topology used as a component of

another topology (i.e. when using a graph as a vertex

of a bigger graph). Sometimes called sub-graph.

B. Architecture

Figure 1 shows the architecture of the system. Its different

components are as follows:

• The graph engine is the main controller, it is responsi-

ble for parsing topologies, matching the vertices with

code blocks, building the corresponding graph, running

different checks against it, and finally executing it.

• Graph plugins can add functionalities, such as graph

manipulation, instrumentation, etc. They are plugged

to the graph engine.

• The blocks registry aggregates the code blocks defined

in different blocks libraries, and extracts their metadata,

either through introspection or through decorators or

tags.

• A topology is the main input of the system, defined in

one or more files.

• Finally, the system can be driven by an API and a

CLI, and more front-ends can be plugged, for instance

graphical interfaces.

We kept the architecture modular, so that it is easily

extendable, and the different components can be replaced

independently; this can be useful for instance to extend the

supported description and programming languages (beyond

YAML and Python).

C. Topologies format

The main design goals of the topology schema are sim-

plicity and extensibility. It is meant to be easily written by

hand, even by non-programmers, who would simply need

to know the high-level concepts of data transformations and

the YAML syntax.

YAML is a data-serialization language, focusing on read-

ability. It can easily define lists and associative arrays, and

supports typing. We chose it for the simplicity of reading

and writing data with it, and because it is fast to parse.

There are two types of objects in a topology schema,

blocks and sub-topologies, described below.
1) Defining and linking components: A topology consists

of two YAML sections: the first one is a simple dictionary,

which permits to assign a name and various metadata to

the topology. It is useful when the number of maintained

topologies grows within an organization, and it permits to

easily retrieve them through a search engine for example.

No key is mandatory in this first section, except the name
when this topology is to be composed with other ones, as it

needs a unique identifier.

The second section lists the different components and

links them together. Some keys are defined in the reference

implementation, and it is easy to add new ones to further

customize the topology. These keys are:

• block: the name of the block (from the blocks reg-

istry) that is to be used;

• name: a unique name for this component;

• args: optional, it allows to give arguments to the

block, to customize its behavior;

• inputs: absent for entry-level blocks (the data

sources), it permits to link components together.

Both args and inputs are defined with a dictionary,

because they are always explicitly named. A block can have

zero or more inputs, and zero or more outputs. At the

topology level, only the inputs are defined; its outputs are

10

name: count_users
description: Count number of system users

- block: readfile
name: my_readfile
args:
filename: /etc/passwd

- block: count
name: my_count
inputs:
data: my_readfile.result

Listing 1: A simple topology

inferred from the other blocks consuming them, and can

sometimes remain unused (if no other block subscribes to

them).

Listing 1 shows a simple topology, which counts the users

of a Linux-based system (note it is incorrect since it will

also count daemons and other system users, but this is out

of the scope of the example). The first block will read a

file line by line, and it knows which file to open through

the args.filename value. The second block will simply

count the length of the data structure it receives: it has one

input, named data, which is linked to the output result
of the named block my_readfile. This block produces

another result, accessible through my_count.result,

which could be displayed on a console, saved to a file, or

used as an input of other blocks.

2) Encapsulating other topologies: The second type of

component which can be defined in a YAML topology is a

topology itself, encapsulated and linked to blocks or other

sub-topologies. This poses a few challenges, mainly to keep

the outer links simple to define.

An example is shown in Listing 2, along with its graph

representation in Figure 2. On the left column, the main

topology is defined, it instantiates a sub-topology block,

count_pb, which is linked to two blocks, readfile and

print. The bind_in dictionary permits to give inputs to

this sub-topology, while bind_out permits to use some of

its outputs as inputs to other blocks. The sub-topology is

displayed on the right column.

Any block output can be used as a sub-topology input, and

once they are defined, they are accessible in the encapsulated

topology through the special dictionary $inputs. We keep

the $ sign as the only reserved symbol, which could be

used in the future for different matters, for example to give

command-line parameters to a topology.

Similar to the bound inputs, any output of any block

of the sub-topology can be linked to a block. There is

no need to use a special dictionary for this purpose, since

outputs are never explicitly declared. In this example, the

value count_pb.result means the output result of

--- ---
name: foo_errors name: count_pb
--- ---
- block: readfile - block: filter
name: readfile name: filter
args: args:
filename: foo.log contains: error

inputs:
- topology: count_pb data: $inputs.data
name: count_pb
bind_in: - block: count
data: readfile.result name: count

bind_out: inputs:
result: count.result data: filter.result

- block: print
name: print
inputs:
data: count_pb.result

Listing 2: Encapsulation example. Left: the main topology;

right: the encapsulated topology. Reports the number of

errors found in a file foo.log.

readfile filter

count print

count pb

Figure 2: The DAG associated to the program in Listing 2.

The bind in and bind out links for the sub-graph are dotted.

the block count of the encapsulated topology count_pb.

The result of this is a program filtering errors in a log file,

counting them, and displaying the sum. It makes a great use

of encapsulation, because the sub-program taking care of

filtering and counting could be used in other topologies, for

example with other log files as bound input, or with a block

saving the result in a database as bound output.

D. Block internals

Blocks are the individual components of the topologies.

They are independent and reusable: they know nothing about

a data processing program, except their inputs and outputs.

Most of them only take care of transforming data, and hence

don’t have side effects, in a purely functional manner. Some

blocks read data from stores (they are the entry points of

the computation graph), and some save back their results

on storage. There is no restriction about the programming

language used to write the blocks, as long as they can be

called from the engine manipulating them. We chose Python

for the reference implementation for a few reasons:

11

@block(engine='localpython')
def take(n: int=0):

"""
Given a list of integers, returns the n
first items.
"""
def inner(data: List[int])->ReturnType[List[int]]:

assert n <= len(data)
return ReturnEntry(result=data[:n])

return inner

Listing 3: A typical block structure

• Simplicity: it is a design goal of λ-blocks to be as

simple as possible, and Python has been known for

being very accessible to novice programmers.

• Variety of libraries: since blocks can wrap any li-

brary function, Python is a good choice for combining

distributed computing (for example through pyspark,

the Python package to interact with Spark), machine

learning (MlLib, scikit-learn), plotting (matplotlib), etc.

• Introspection: it is straightforward to inspect functions

in Python, hence the engine can infer a lot of metadata

about a block (its arguments, inputs, outputs, and docu-

mentation) without them being declared explicitly. Any

other metadata can be added with function decorators.

An example is shown in Listing 3. A block named take
is registered through the @block decorator, which takes any

pair of key/value for tagging it, for example to categorize

it. We then create a closure: the outer function takes the

block’s arguments, while the inner function takes the block’s

inputs. We use Python’s type annotation capabilities to give

types to the arguments, inputs and outputs. The special

ReturnType and ReturnEntry give us the ability to

properly define the block’s outputs, to overcome some

limitations of the dynamic manipulation of Python’s typing

annotations. This way, the arguments, inputs and outputs can

all be documented and verified.

What happens in the inner function is the responsibility

of the block developer, and can be anything Python can do,

such as direct data manipulation, library function wrapping,

or input/output (to retrieve and store data).

E. Execution engine

The execution engine is the glue between the topologies

and the Python blocks of code. Upon initialization, it will

parse a topology, build the associated DAG (recursively

when sub-topologies are involved), and associate each vertex

with a named block of code. It can then run some DAG

manipulations, do all the necessary checks, and execute the

graph, giving each component its inputs after they have been

computed.

The execution engine must be fast, to reduce the overhead

of the system as much as possible, and also easy to extend, to

leave the possibility of adding graph manipulations. For the

count
in: List[Any]

out: int

sort
in: List[Any]
out: List[Any]

to string
in: int

out: str

Figure 3: Type checking

latter, atop the internal API to manipulate edges, vertices,

and the engine itself, it provides a plugin system, which

makes it easy to register hooks at the different steps of the

graph execution. When these hooks are called, they receive

relevant parameters, such as the current value of the flowing

data for a certain block. Some possible manipulations are

described in the next section, showing both the use of the

internal API and the plugin system.

In the reference implementation, the engine is single-

threaded. However, each component can easily leverage

parallelization by spawning multiple threads. While this is

not optimal for building a proper distributed system, it is not

λ-blocks’ role: distributed data processing frameworks such

as Apache Spark do it better. λ-blocks is meant to wrap their

instructions in order to combine their benefits with its own.

III. TOPOLOGY ABSTRACTION

As stated earlier, having a high-level representation of the

processing topology can bring many benefits, among them

the possibility of observing and optimizing a data processing

program. We describe as an example the use of type-

checking to perform verifications between connected blocks,

and dive into the plugin interface λ-blocks provides to let

developers implement their own topology manipulations.

A. Type checking

Python does not benefit from compile-time type safety.

However, it supports type annotations for variables and

functions, and these annotations include base types as well

as more complex ones, such as generic lists and dictionaries,

unions, callables, etc. Type checking can only happen stati-

cally, with the Mypy [3] static analyzer. The links between

the different blocks being computed dynamically (from their

YAML description), we implemented a type checker, which

runs right after the DAG construction. The types of every

vertex input and output have already been introspected,

hence it is enough to check that the types of both ends of

an edge are compatible.

An example of type checking is shown in Figure 3.

The block count takes a list of elements, and returns the

length of the list, as an integer. This is fine for the block

to_string, which takes an integer as an input, however

this doesn’t make sense for the block sort, which takes

12

a list as an input. The type checker, when verifying the

edge between the blocks count and sort, will see two

incompatible types at its extremities, and will raise an error.

This process was easily implemented thanks to the high-

level DAG manipulation features λ-blocks provides: iterating

through vertices and edges, accessing blocks’ details, and

accessing the registry’s objects (functions, input types, etc).

This feature is useful on its own, but can also be leveraged

when writing a graphical interface: an edge could simply

not be created between two vertices if their types were not

compatible. This reduces potential errors while writing data

processing programs, giving an immediate feedback to the

user.

B. Plugins

λ-blocks’ topologies can be enhanced by plugins, pieces

of code which can register hooks to be run at different stages

of the execution. They access the relevant datastructures

(topologies and individual blocks) and can modify them in

place.

Plugins can be categorized according to when their hooks

are executed: passive plugins run code before and after the

topology execution (for example to perform verifications,

offline optimizations, etc), while active plugins run code

during the execution (for example for online optimizations

or measurements).

As an example, we describe how to implement a plugin

for instrumenting topologies, i.e. measuring the time taken

by each of its components. We define three hooks:

• before block execution: stores a timestamp associated

to this block;

• after block execution: computes the time it took for the

block to execute, using the previous timestamp;

• after graph execution: sorts and displays all the

recorded durations.

Listing 4 shows an excerpt of the instrumentation plugin

implementation. With less than 20 lines of code, this plugin

is able to determine the slowest blocks of a topology, to give

developers insights on how to optimize their programs.

This example shows the easiness with which one can

implement plugins to manipulate topologies, which brings

additional benefits to the idea of separating code from

processing chains.

IV. EVALUATION

A. Performances

The first metric we want to calculate is the overhead

of using λ-blocks’ engine, compared to a regular Python

program. We run 3 different programs, and compare their

execution times on different setups:

• with λ-blocks;

by_block = {} # timing by block: begin, duration

@before_block_execution
def store_begin_time(block):

name = block.fields['name']
by_block[name]['begin'] = time.time()

@after_block_execution
def store_end_time(block, results):

name = block.fields['name']
by_block[name]['duration'] = \
time.time() - by_block[name]['begin']

@after_graph_execution
def show_times(results):

longest_first = sorted(by_block, reverse=True)
for blockname in longest_first:

print('{}\t{}'.format(
blockname,
by_block[blockname]['duration']))

Listing 4: Instrumentation plugin

• with λ-blocks and two plugins: debug (which displays

the intermediary results computed by every block) and

instrumentation (described in Section III-B);

• without λ-blocks, writing the equivalent code in a

regular Python fashion.

The three programs we run show different patterns of

latency and complexity:

• Wordcount on trending Twitter hashtags: we run the

example shown in Listing 5, which extracts hashtags

from the Twitter API, and groups and counts them

in a wordcount sub-topology (a general-purpose topol-

ogy that defines a group-by/count/sort/head processing

chain for any input). This program has a non-negligible

network overhead, since it needs to wait for the http

queries to complete before continuing. It is single-

threaded.

• Wordcount on a local file (without network queries),

over a Wikipedia dataset [4] which we trimmed to

consist of 10 million words. This dataset is an HTML

dump of the English version of Wikipedia. The program

is very similar to the previous one (blocking on disk

instead of network) and is single-threaded.

• PageRank on an Apache Spark cluster, over a dataset

of internal Wikipedia hyperlinks [5]. The DAG has

two entry points (the file containing the links, and the

one containing the page names, both stored in HDFS),

and the blocks use various Spark functions. It is run

on a bare-metal Spark server, and is an example of

how blocks can be simple wrappers around other data

processing frameworks.

To obtain more precise results, we run the Twitter Word-

count 10 times for each setup (with the program latency,

that’s the limit to not reach the API rate limits), the

Wikipedia Wordcount 1000 times, and the Spark PageRank

13

name: twitter-wordcount
description: Extract the most used hashtags on the

recent AFP timeline.

- block: twitter_search
name: twitter_search
args:
query: "from:afp"
client_key: xxx
client_secret: xxx
resource_owner_key: xxx
resource_owner_secret: xxx

- block: flatMap
name: extract_hashtags
inputs:
data: twitter_search.result

args:
func: "lambda x: [y['text'] for y in \

x['entities']['hashtags']]"

- topology: topology-wordcount
name: wordcount
bind_in:
data: extract_hashtags.result

bind_out:
result: head.result

- block: show_console
name: show_console
inputs:
data: wordcount.result

Listing 5: Wordcount over the most recent hashtags from

the press agency AFP, using a sub-graph.

10 times. We kept the average of the obtained values as our

reference.

The times are measured with /usr/bin/time -p: real
is the time taken by the program to complete; user is the

CPU time consumed in user mode by the program, and sys
is the CPU time consumed in kernel mode. If user and sys
don’t add up to real, it means the program was blocked

during execution, generally waiting for disk or network.

Figure 4 shows the results obtained. The first program,

in Figure 4a, confirms there is indeed a network overhead,

during which the program is waiting (in the three cases),

and is not consuming CPU cycles. More importantly, by

substracting times, we measure the overhead of using λ-

blocks: about 50 ms per run (we see in Section IV-B how

it can be reduced further). The last interesting point is the

negligible difference between λ-blocks with and without

plugins: inspecting the graph vertices and instrumenting their

computation times comes almost for free (the difference is

smaller than the standard deviation of multiple runs in the

same setup).

Figure 4b shows almost the same execution times for the

three setups, and the first one (with λ-blocks) is even faster.

This is not supposed to be the case, because it executes more

code by design, but comes from the non-determinism of disk

(and kernel cache) input/output: the speed varies with time,

hence the imprecision of the calculation. The key point here

is that using λ-blocks doesn’t add any significant overhead

if the job runs over a few seconds.
Finally, Figure 4c depicts the execution times for the

PageRank computed with Spark. The first thing to notice is

the low values of user and sys times, too low to be visible

on the plot. This time it is not due to the majority of the

program waiting for IO, but rather because the programs are

communicated to and executed by a Spark daemon. Hence

the CPU times are not seen by /usr/bin/time. However

the real times are correct, and we can use them to compare

the setups. Similar to the previous experiments, using λ-

blocks doesn’t add any significant overhead; and for such

a job duration (about 14 minutes), it is negligible. Hence

λ-blocks can easily drive a Spark program at a low cost.

B. Engine instrumentation
In order to further reduce the overhead added by the

use of λ-blocks’ engine compared to writing regular Python

programs, we instrument the framework when running the

Wikipedia Wordcount described above. We used a smaller

input file in order to have a total execution time comparable

to the measured overheads. We instrument three different

setups, only changing the command-line parameters of λ-

blocks:

• Loading all the block modules, and two plugins;

• Loading only one block module, and two plugins;

• Loading only one block module, without any plugin.

Figure 5 shows the results we obtained, with the different

steps followed by λ-blocks : (1) Python startup, modules

import and arguments parsing; (2) Blocks registry creation,

block modules import; (3) Plugin import; (4) YAML parsing

and graph creation; (5) Graph checks; (6) Graph execution.

We note interesting results:

• Importing and executing plugins doesn’t add any vis-

ible overhead, which confirms the results described in

Section IV-A.

• Importing all the available blocks in the built-in block

modules is very costly: between 250 and 300 ms.

Python’s import mechanisms are known to being

slow [6]. This is why we only imported selected block

modules in the previous section, to obtain a smaller

framework overhead.

• Building the computation graph, and running checks

against it (correct YAML, type checking, absence of

loops, etc), is very fast; this is encouraging to develop

more graph manipulation plugins.

Overall, the best optimization we found is to avoid import-

ing block modules if they are not to be used. We target our

future work to develop a λ-blocks daemon, in order to load

modules only once and execute many computation graphs

on demand.

14

LB LB+plugins Python

0.1

0.2

0.3

0.4

0.5

0.6

ti
m

e
(s

)

real user sys

(a) Twitter hashtags Wordcount

LB LB+plugins Python

1

2

3

4

5

6

ti
m

e
(s

)

real user sys

(b) Wikipedia file Wordcount

LB LB+plugins Python

0

200

400

600

800

ti
m

e
(s

)

real user sys

(c) Wikipedia hyperlinks PageRank

Figure 4: Time taken to process different programs, with and without λ-blocks.

 0

 0.2

 0.4

 0.6

 0.8

 1

(1) (2) (3) (4) (5) (6)

ti
m

e
(s

)

all blocks + plugins
selected blocks + plugins
selected blocks

Figure 5: Instrumentation of a Wordcount program running

under different setups.

V. RELATED WORK

Blocks-based programming has gained a lot of attention

recently [7]. λ-blocks shares similar ideas, for example com-

bining chunks of embedded code to create larger programs.

However, block-based graphical interfaces are not oriented

towards large scale data processing, and hence do not benefit

from distributed libraries such as Apache Spark. We plan to

explore some of their innovative features such as recognition
over recall [7], immediate feedback, and impossibility to

link blocks that don’t make sense together. We believe it

is a path towards bringing data processing and analysis to

non-programmers.

Graphs from configuration is not a novel concept either.

Pyleus [8] and later Storm Flux [9] brought configuration-

based topologies to the Apache Storm [1] framework, for

stream-processing. They both use a YAML format to define

topologies, and inspired λ-blocks. However, they are limited

to control Storm’s own objects, spouts and bolts, which are

meant to process streaming data.

Dataflow programming with pipelines has been imple-

mented in numerous frameworks. For machine-learning

applications for example, scikit-learn [10] and Apache

Spark [11] have a built-in concept of Machine Learning

Pipelines, where different data processors are defined and

linked with each other. However, the DAGs are created

programmatically in their respective library languages, and

they are limited to the components of their frameworks.

The Orange framework [12] features a collection of

widgets, linkable with each other, to execute and visualize

machine learning algorithms. Like λ-blocks, it has a pro-

gramming interface to implement new widgets in Python.

StreamPipes [13] is a framework for building and execut-

ing data stream pipelines, oriented towards distributed real-

time processing of data, between sources and sinks. Some

of their ideas are similar to those of λ-blocks (type checking

(and other verifications) between operators, independent and

self-contained blocks of code), but the framework differs

with regard to some design choices: stress towards wrap-

ping external computing engines, formalization of message

passing between operators with data serialization formats

(no possibility to use direct memory transfers), and RDF

as the description and configuration language. Finally, it is

oriented towards real-time data, whereas λ-blocks focuses

on offline analysis.

Cascading [14] is a layer on top of Apache Hadoop.

It permits to programmatically describe MapReduce jobs,

by linking components together (sources, pipes, and sinks)

in any JVM-based language. It has some similarities with

λ-blocks, but also different goals: restricted to Hadoop

and Flink, no graph manipulation, no configuration-oriented

description of jobs.

KeystoneML [15] is a framework written in Scala, lever-

aging the use of high-level operators to build machine

learning pipelines. Like the other introduced frameworks,

it has different goals than λ-blocks’, but shares the dataflow

design and the reuse of components.

Other related tools [16], [17], [18], [19], [20] exist, but to

the best of our knowledge, none implements all the features

of λ-blocks, in particular the DAG specifications and the

high-level graph manipulation abstractions.

15

VI. CONCLUSION AND FUTURE WORK

We presented λ-blocks, a system which permits to define

execution graphs for large scale data processing, combining

blocks of code with high-level manipulable directed acyclic

graphs. We described a reference implementation of λ-

blocks, which uses Python as the language for blocks and

YAML as the data-serialization format for topologies. We

explained the design choices, the system internals, and evalu-

ated the framework. λ-blocks has a very small overhead with

regards to a system which doesn’t use explicit computation

graphs.

As future work, we want to explore how we can fur-

ther reason about these graphs. λ-blocks allows to work

with a high-level DAG, which opens opportunities for

graph complexity analysis, serialization methods compar-

ison, caching optimizations, automatic choosing of data

processing libraries, in-depth monitoring, and verification

of programs’ semantics. Another axis we want to explore

is data streaming, and how we can simply and efficiently

implement continuous queries on online data; as well as for

example implementing triggers with blocks, which could

be used for many automation tasks beyond the scope of

data analysis. Another open problem is the representation of

lambda functions: as of today, we used Python’s notation,

because the execution engine is written in Python. We plan

to further explore the possibilities to stay language-agnostic

for this issue. Finally, we want to search new ways to

mirror library APIs, in order to simplify the writing and

maintenance of block collections.

ACKNOWLEDGMENT

This work has been supported by the Smart Support

Center FEDER EU project, and the Project Pia FSN Hydda.

We also thank all the people who have contributed design

ideas and helped with the development of λ-blocks.

REFERENCES

[1] A. Toshniwal, S. Taneja, A. Shukla, K. Ramasamy, J. M.
Patel, S. Kulkarni, J. Jackson, K. Gade, M. Fu, J. Donham,
N. Bhagat, S. Mittal, and D. Ryaboy, “Storm@twitter,” in
Proceedings of the 2014 ACM SIGMOD International Con-
ference on Management of Data, ser. SIGMOD ’14. ACM,
2014, pp. 147–156.

[2] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and
I. Stoica, “Spark: Cluster Computing with Working Sets,” in
Proceedings of the 2Nd USENIX Conference on Hot Topics
in Cloud Computing, ser. HotCloud’10. Berkeley, CA, USA:
USENIX Association, 2010, pp. 10–10. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1863103.1863113

[3] Jukka Lehtosalo et al., “Mypy,” http://mypy-lang.org/.

[4] “Puma benchmarks and dataset downloads,”
https://engineering.purdue.edu/∼puma/datasets.htm.

[5] H. Yin, A. R. Benson, J. Leskovec, and D. F. Gleich,
“Local higher-order graph clustering,” in Proceedings of the
23rd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, ser. KDD ’17. New York,
NY, USA: ACM, 2017, pp. 555–564. [Online]. Available:
http://doi.acm.org/10.1145/3097983.3098069

[6] “PythonSpeed/PerformanceTips - Python Wiki,”
https://wiki.python.org/moin/PythonSpeed/PerformanceTips#
Import Statement Overhead.

[7] D. Bau, J. Gray, C. Kelleher, J. Sheldon, and F. Turbak,
“Learnable programming: Blocks and beyond,” Commun.
ACM, vol. 60, no. 6, pp. 72–80, May 2017. [Online].
Available: http://doi.acm.org/10.1145/3015455

[8] YelpArchive, “Pyleus,” https://github.com/YelpArchive/
pyleus, 2016.

[9] The Apache Storm developers, “Flux,” http://storm.apache.
org/releases/2.0.0-SNAPSHOT/flux.html, 2017.

[10] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss,
V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn:
Machine learning in Python,” Journal of Machine Learning
Research, vol. 12, pp. 2825–2830, 2011.

[11] The Apache Spark developers, “ML Pipelines,” https://spark.
apache.org/docs/latest/ml-pipeline.html, 2017.

[12] J. Demšar, T. Curk, A. Erjavec, Črt Gorup, T. Hočevar,
M. Milutinovič, M. Možina, M. Polajnar, M. Toplak,
A. Starič, M. Štajdohar, L. Umek, L. Žagar, J. Žbontar,
M. Žitnik, and B. Zupan, “Orange: Data mining toolbox in
python,” Journal of Machine Learning Research, vol. 14, pp.
2349–2353, 2013. [Online]. Available: http://jmlr.org/papers/
v14/demsar13a.html

[13] D. Riemer, F. Kaulfersch, R. Hutmacher, and L. Stojanovic,
“Streampipes: solving the challenge with semantic stream
processing pipelines,” in Proceedings of the 9th ACM In-
ternational Conference on Distributed Event-Based Systems.
ACM, 2015, pp. 330–331.

[14] “Cascading — Application Platform for Enterprise Big Data,”
http://www.cascading.org/.

[15] E. R. Sparks, S. Venkataraman, T. Kaftan, M. J. Franklin,
and B. Recht, “Keystoneml: Optimizing pipelines for large-
scale advanced analytics,” in 2017 IEEE 33rd International
Conference on Data Engineering (ICDE), April 2017, pp.
535–546.

[16] “Pipeline.io,” http://pipeline.io/.

[17] “Xplenty,” https://www.xplenty.com/is/.

[18] “Blaze,” http://blaze.pydata.org/.

[19] “Pipes.digital,” https://www.pipes.digital/.

[20] “Flowhub and Noflojs,” https://flowhub.io/.

16

